1. \square, rectangle, rhombus, square
2. parallelogram
3. trapezoid
4. \square, rhombus

5. kite

6. trapezoid, isosc. trapezoid
7. rhombus
8. parallelogram

9. rhombus
10. rectangle
11. kite
12. isosc. trapezoid
13. rhombus

14. trapezoid

15. kite

16. rectangle

Answers for Lesson 6-1, pp. 308-311 Exercises (cont.)

17. quadrilateral

18. isos. trapezoid

			\boldsymbol{y}			
	E	2		H		x
-8	7	0				8
F					${ }_{\square}$	G

19. $x=11, y=29 ; 13,13,23,23$
20. $x=4, y=4.8 ; 4.5,4.5,6.8,6.8$
21. $x=2, y=6 ; 2,7,7,2$
22. $x=1 ; 4,2,4,7$
23. $x=3, y=5 ; 15,15,15,15$
24. $x=5, y=4 ; 3,3,3,3$
25. $40,40,140,140 ; 11,11,15,32$
26. $58,58,122,122 ; 6,6,6,6$
27. rectangle, square, trapezoid
28. D

29-34. Answers may vary. Samples are given.
29.

30.

31. Impossible; a trapezoid with one rt. \angle must have another, since two sides are $\|$.

Answers for Lesson 6-1, pp. 308-311 Exercises (cont.)

32.

33.

34.

35.

36. True; a square is both a rectangle and a rhombus.
37. False; a trapezoid only has one pair of $\|$ sides.
38. False; a kite does not have \cong opp. sides.
39. True; all squares are $\boxed{\Omega}$.

40 False; kites are not
41. False; only rhombuses with rt. $\angle s$ are squares.
42. Rhombus; all 4 sides are \cong because they come from the same cut.
43. Check students' work.
44. A rhombus has $4 \cong$ sides, while a kite has 2 pairs of adj. sides \cong, but no opp. sides are \cong. Opp. sides of a rhombus are $\|$, while opp. sides of a kite are not $\|$.

45-48. Check students' sketches.

45. some isos. trapezoids, some trapezoids
46. \square, rhombus, rectangle, square
47. rectangle, square
48. rhombus, square, kite, some trapezoids
49. A trapezoid has only one pair of $\|$ sides.

50-53. Check students' sketches.
50. rectangle, \square, kite
51. rhombus, \square
52. square, rhombus, \square
53. rhombus, \square, kite

54-55. Check students' work.
56-59. Explanations may vary. Samples are given.
56. \square, rectangle, trapezoid
57. \square, kite, rhombus, trapezoid, isos. trapezoid
58. kite, \square, rhombus, trapezoid, isos. trapezoid
59. \square, rectangle, square, rhombus, kite, trapezoid

1. 127
2. 67
3. 76
4. 124
5. 100
6. 118
7. $3 ; 10,20,20$
8. $22 ; 18.5,23.6,23.6$
9. 20
10. 18
11. 17
12. $12 ; m \angle Q=m \angle S=36, m \angle P=m \angle R=144$
13. $6 ; m \angle H=m \angle J=30, m \angle I=m \angle K=150$
14. $x=6, y=8$
15. $x=5, y=7$

16. $x=7, y=10$
17. $x=6, y=9$
18. $x=3, y=4$
19. $12 ; 24$
20. Pick 4 equally spaced lines on the paper. Place the paper so that the first button is on the first line and the last button is on the fourth line. Draw a line between the first and last buttons. The remaining buttons should be placed where the drawn line crosses the $2 \|$ lines on the paper.
21. 3
22. 3
23. 6
24. 6
25. 9
26. 2.25
27. 2.25
28. 4.5
29. 4.5
30. 6.75
31. $B C=A D=14.5 \mathrm{in}$.; $A B=C D=9.5 \mathrm{in}$.
32. $B C=A D=33 \mathrm{~cm} ; A B=C D=13 \mathrm{~cm}$
33. A
34. The opp. $\& \leqslant$ are \cong, so they have $=$ measures. Consecutive $\&$ are suppl., so their sum is 180 .
35. a. $\overline{D C}$
b. $\overline{A D}$
C. \cong
d. Reflexive
e. ASA
f. СРСТС
36.

40. The lines going across may not be $\|$ since they are not marked as $\|$.
41. 18,162
42. Answers may vary. Sample:

1. LENS and NGTH are $\square \mathrm{s}$. (Given)
2. $\angle E L S \cong \angle E N S$ and $\angle G T H \cong \angle G N H$ (Opp. \measuredangle of a \square are \cong.)
3. $\angle E N S \cong \angle G N H$ (Vertical \angle are \cong.)
4. $\angle E L S \cong \angle G T H$ (Trans. Prop. of \cong)
5. Answers may vary. Sample: In $\mathbb{\Omega}$ LENS and NGTH, $\overline{G T} \| \overline{E H}$ and $\overline{E H} \| \overline{L S}$ by the def. of a \square. Therefore $\overline{L S} \| \overline{G T}$ because if 2 lines are $\|$ to the same line then they are \| to each other.
6. Answers may vary. Sample:
7. LENS and NGTH are $\boxed{\text { s. }}$. (Given)
8. $\angle G T H \cong \angle G N H$ (Opp. $\angle \mathrm{s}$ of a \square are \cong.)
9. $\angle E N S \cong \angle G N H$ (Vertical \measuredangle are \cong.)
10. $\angle L E N$ is supp. to $\angle E N S$ (Consec. $\angle s$ in a \square are suppl.)
11. $\angle E N S \cong \angle G T H$ (Trans. Prop. of \cong)
12. $\angle E$ is suppl. to $\angle T$. (Suppl. of $\cong \angle s$ are suppl.)
13. $x=12, y=4$
14. $x=0, y=5$
15. $x=9, y=6$
16. Answers may vary. Sample: In $\square R S T W$ and $\square X Y T Z$, $\angle R \cong \angle T$ and $\angle X \cong \angle T$ because opp. $\angle \mathrm{s}$ of a \square are \cong. Then $\angle R \cong \angle X$ by the Trans. Prop. of \cong.
17. In $\square R S T W$ and $\square X Y T Z, \overline{X Y} \| \overline{T W}$ and $\overline{R S} \| \overline{T W}$ by the def. of a \square. Then $\overline{X Y} \| \overline{R S}$ because if 2 lines are $\|$ to the same line, then they are $\|$ to each other.
18. $\overline{A B} \| \overline{D C}$ and $\overline{A D} \| \overline{B C}$ by def. of $\square . \angle 2 \cong \angle 3$ and $\angle 1 \cong \angle 4$ by alt. int. $\angle \mathrm{s} . \angle 1 \cong \angle 2$ by def. of \angle bisect., so $\angle 3 \cong \angle 4$ by Trans. Prop. of \cong.
19. a. Answers may vary. Check students' work.
b. No; the corr. sides can be \cong but the \llcorner may not be.
20. a. $\overleftrightarrow{A B}\|\overleftrightarrow{C D}\| \overleftrightarrow{E F}$ and $\overline{A C} \cong \overline{C E}$ (Given)
b. $A B G C$ and $C D H E$ are parallelograms. (Def. of a \square)
c. $\overline{B G} \cong \overline{A C}$ and $\overline{D H} \cong \overline{C E}$ (Opp. sides of a \square are \cong.)
d. $\overline{B G} \cong \overline{D H}$ (Trans. Prop. of \cong)
e. $\overline{B G} \| \overline{D H}$ (If 2 lines are $\|$ to the same line, then they are $\|$ to each other.)
f. $\angle 2 \cong \angle 1, \angle 1 \cong \angle 4, \angle 4 \cong \angle 5$, and $\angle 3 \cong \angle 6$ (If 2 lines are $\|$, then the corr. \triangle are \cong.)
g. $\angle 2 \cong \angle 5$ (Trans. Prop. of \cong)
h. $\triangle B G D \cong \triangle D H F$ (AAS)
i. $\overline{B D} \cong \overline{D F}$ (СРСТС)
21. a. Given: 2 sides and the included \angle of $\square A B C D$ are \cong to the corr. parts of $\square W X Y Z$. Let $\angle A \cong \angle W, \overline{A B} \cong W X$ and $\overline{A D} \cong \overline{W Z}$. Since opp. \triangle of a \square are $\cong, \angle A \cong \angle C$ and $\angle W \cong \angle Y$. Thus $\angle C \cong \angle Y$ by the Trans. Prop. of \cong. Similarly, opp. sides of a \square are \cong, thus $\overline{A B} \cong \overline{C D}$ and $\overline{W X} \cong \overline{Z Y}$. Using the Trans. Prop. of $\cong, \overline{C D} \cong \overline{Z Y}$. The same can be done to prove $\overline{B C} \cong \overline{X Y}$. Since consec. $\mathbb{\perp}$ of a \square are suppl., $\angle A$ is suppl. to $\angle D$, and $\angle W$ is suppl. to $\angle Z$. Suppls. of $\cong \triangle$ are \cong, thus $\angle D \cong \angle Z$. The same can be done to prove $\angle B \cong \angle X$. Therefore, since all corr. \leftrightarrow and sides are $\cong, ~ \square A B C D \cong \square W X Y Z$.
b. No; opp. \triangleq and sides are not necessarily \cong in a trapezoid.
22. 5
23. $x=3, y=4$
24. $x=1.6, y=1$
25. $\frac{5}{3}$
26. 5
27. 13
28. Yes; both pairs of opp. sides are \cong.
29. No; the quad. could be a kite.
30. Yes; both pairs of opp. \mathbb{L} are \cong.
31. It remains a \square because the shelves and connecting pieces remain $\|$.
32. A quad. is a \square if and only if opp. sides are $\cong(6-1$ and $6-5)$; opp. \llcorner sare $\cong(6-2$ and 6-6); diags. bis. each other (6-3 and 6-7).
33. a. Distr. Prop.
b. Div. Prop. of Eq.
c. $\overline{A D}\|\overline{B C}, \overline{A B}\| \overline{D C}$
d. If same-side int. \&s are suppl., the lines are \|.
e. Def. of \square
34. Draw diagonals $\overline{T X}$ and $\overline{W Y}$ intersecting at R.
a. $\overline{T W} \cong \overline{Y X}$ (Given)
b. $\angle T W R \cong \angle X Y R($ Alt. Int. $\angle \mathrm{s} \cong)$
c. $\angle W T R \cong \angle Y X R($ Alt. Int. $\angle \mathrm{s} \cong)$
d. $\triangle T W R \cong \triangle Y X R(\mathrm{ASA})$
e. $\overline{W R} \cong \overline{Y R}$ (CPCTC)
f. $\overline{T R} \cong \overline{X R}(\mathrm{CPCTC})$
g. The diagonals bisect each other. (def. of bis.)
h. $T W X Y$ is a \square (Thm. 6-7).
35. $x=15, y=25$
36. $c=8, a=24$
37. D
38. Answers may vary. Sample:

39. $\angle J K N \cong \angle L M N$ (given), $\angle L K N \cong \angle J M N$ (given), and $\overline{M K} \cong \overline{M K}$, so $\triangle J K M \cong \triangle L M K$ by ASA. $\overline{J K} \cong \overline{M L}$ and $\overline{M J} \cong \overline{L K}$ (CPCTC), so $J K L M$ is a \square because opp. sides are $\cong($ Thm. 6-5).
40. $\triangle T R S \cong \triangle R T W$ (given), so $\overline{S T} \cong \overline{R W}$ and $\overline{S R} \cong \overline{T W}$. $R S T W$ is a \square because opp. sides are \cong (Thm. 6-5).
41. $(4,0)$
42. $(6,6)$
43. $(-2,4)$
44. You can show a quad. is a \square if both pairs of opp. sides are $\|$ or \cong, if both pairs of opp. \measuredangle are \cong, if diagonals bisect each other, if all consecutive $\stackrel{s}{ }$ are suppl., or if one pair of opp. sides is both $\|$ and \cong.
45. $\frac{1}{6}$
46. Answers may vary. Sample:
47. $\overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{B D}$ (Given)
48. $A C D B$ is a \square. (If opp. sides of a quad. are \cong, then it is $\mathrm{a} \square$.)
49. M is the midpoint of $\overline{B C}$. (The diag. of a \square bisect each other.)
50. $\overline{A M}$ is a median. (Def. of a median)
51. $G(-4,1), H(1,3)$
52. $38,38,38,38$
53. $26,128,128$
54. $118,31,31$
55. $33.5,33.5,113,33.5$
56. $32,90,58,32$
57. $90,60,60,30$
58. $55,35,55,90$
59. $60,90,30$
60. $90,55,90$
61. $4 ; L N=M P=4$
62. $3 ; L N=M P=7$
63. $1 ; L N=M P=4$
64. $9 ; L N=M P=67$
65. $\frac{5}{3} ; L N=M P=\frac{29}{3}=9 \frac{2}{3}$
66. $\frac{5}{2} ; L N=M P=12 \frac{1}{2}$
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
67. rhombus; one diag. bis. $2 \& s$ of the \square (Thm. 6-12).
68. rhombus; the diags. are \perp.
69. neither; the figure could be a \square that is neither a rhombus nor a rect.
70. The pairs of opp. sides of the frame remain \cong, so the frame remains a \square.
71. After measuring the sides, she can measure the diagonals. If the diags. are \cong, then the figure is a rectangle by Thm. 6-14.
72. Square; a square is both a rectangle and a rhombus, so its diag. have the properties of both.
73. a. Def. of a rhombus
b. Diagonals of a \square bisect each other.
c. $\overline{A E} \cong \overline{A E}$
d. Reflexive Prop. of \cong
e. $\triangle A B E \cong \triangle A D E$
f. СРСТС
g. \angle Add. Post.
h. $\angle A E B$ and $\angle A E D$ are rt. $\angle \mathrm{s}$.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
i. \cong suppl. $\measuredangle \mathrm{s}$ are $\mathrm{rt} . ~ \Perp \mathrm{Thm}$.
j. Def. of \perp
74. Answers may vary. Sample: The diagonals of a \square bisect each other so $\overline{A E} \cong \overline{C E}$. Both $\angle A E D$ and $\angle C E D$ are right $\angle \mathrm{s}$ because $\overline{A C} \perp \overline{B D}$, and since $\overline{D E} \cong \overline{D E}$ by the Reflexive Prop., $\triangle A E D \cong \triangle C E D$ by SAS. By CPCTC $\overline{A D} \cong \overline{C D}$, and since opp. sides of a \square are $\cong, \overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$. So $A B C D$ is a rhombus because it has $4 \cong$ sides.
75. A

25-34. Symbols may vary. Samples are given:
 parallelogram:
 rhombus: \mathbb{B}
 rectangle: \square
 square: S

25. ${ }^{\Omega}$, s
26. $\square, \boxed{\square}, \square, ~ \llbracket$
27. $\square, \boxed{\circledR} \square \square, \square$
28. \square, \square
29. $\square, \llbracket, \square$, \square
30. \square, \subseteq
31. B , S
32.

Diag. are \cong, diag. are \perp.
34. ${ }^{1}$, S
36.

Diag. are \perp and \cong.
37.

Diag. are \cong, diag. are \perp.
38. a. Opp. sides are \cong and $\|$; diag. bis. each other; opp. $\angle s$ are \cong; consec. $\angle s$ are suppl.
b. All sides are \cong; diag. are \cong.
c. All \measuredangle are rt. \measuredangle; diag. are \perp bis. of each other; each diag. bis. two $\angle \leq$.
39. 1. $A B C D$ is a parallelogram. (Given) $\overline{A C}$ bisects $\angle B A D$ and $\angle B C D$. (Given)
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ (Def. of bisect)
3. $\overline{A C} \cong \overline{A C}$ (Refl. Prop. of \cong)
4. $\triangle A B C \cong \triangle A D C$ (ASA)
5. $\overline{A B} \cong \overline{A D}$ (CPCTC)
6. $\overline{A B} \cong \overline{D C}, \overline{A D} \cong \overline{B C}$ (Opp. sides of a \square are \cong.)
7. $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ (Trans. Prop. of \cong)
8. $A B C D$ is a rhombus. (Def. of rhomb.)
40.

41. Yes; since all right $\angle s$ are \cong, the opp. $\angle \mathrm{s}$ are \cong and it is a \square. Since it has all right \measuredangle, it is a rectangle.
42. Yes; 4 sides are \cong, so the opp. sides are \cong making it a \square. Since it has $4 \cong$ sides it is also a rhombus.
43. Yes; a quad. with $4 \cong$ sides is a \square and a \square with $4 \cong$ sides and 4 right $\angle s$ is a square.
44. 30
45. $x=5, y=32, z=7.5$
46. $x=7.5, y=3$

47-49. Drawings may vary. Samples are given.
47. Square, rectangle, isosceles trapezoid, kite

48. Rhombus, \square, trapezoid, kite

49. For $a<b$: trapezoid, isosc. trapezoid $\left(a>\frac{1}{2} b\right), \square$, rhombus, kite

For $a>b$: trapezoid, isosc. trapezoid, \square, rhombus ($a<2 b$), kite, rectangle,
 square (if $a=\sqrt{2} b$)

50. 16,16
51. 2,2
52. 1,1
53. 1,1

54-59. Answers may vary. Samples are given.
54. Draw diag. 1 , and construct its midpt. Draw a line through the mdpt. Construct segments of length diag. 2 in opp. directions from mdpt. Then, bisect these segments. Connect these mdpts. with the endpts. of diag. 1.
55. Construct a rt. \angle, and draw diag. 1 from its vertex. Construct the \perp from the opp. end of diag. 1 to a side of the rt. \angle. Repeat to other side.
56. Same as 54 , but construct a \perp line at the midpt. of diag. 1 .
57. Same as 56 , except make the diag. \cong.
58. Draw diag. 1. Construct a \perp at a pt. different than the mdpt. Construct segments on the \perp line of length diag. 2 in opp. directions from the pt. Then, bisect these segments. Connect these midpts. to the endpts. of diag. 1.
59. Draw an acute \angle. Use the compass to mark the length of diag. 1 on one side of the angle. The other side will be a base for the trap. Construct a line $\|$ to the base through the nonvertex endpt. of diag. 1. Set the compass to the length of diag. 2 and place the point on the non-vertex endpt. of the base. Draw an arc that intersects the line $\|$ to the base. Draw diag. 2 through these two points. Finish by drawing the non-\| sides of the trap.
60. Impossible; if the diag. of a \square are \cong, then it would have to be a rectangle and have right \angle.
61. Yes; \cong diag. in a \square mean it can be a rectangle with 2 opp. sides 2 cm long.
62. Impossible; in a \square, consecutive \angle s must be supp., so all \angle must be right $\stackrel{\Delta}{ }$. This would make it a rectangle.
63. Given $\square A B C D$ with diag. $\overline{A C}$. Let $\overline{A C}$ bisect $\angle B A D$. Because $\triangle A B C \cong \triangle D A C, A B=D A$ by CPCTC. But since opp. sides of a \square are $\cong, A B=C D$ and $B C=D A$. So $A B=B C=C D=D A$, and $\square A B C D$ is a rhombus. The new statement is true.

1. $77,103,103$
2. $69,69,111$
3. $49,131,131$
4. $105,75,75$
5. $115,115,65$
6. $120,120,60$
7. a. isosc. trapezoids
b. $69,69,111,111$
8. 90,68
9. $90,45,45$
10. 108,108
11. $90,26,90$
12. $90,40,90$
13. $90,55,90,55,35$
14. $90,52,38,37,53$
15. $90,90,90,90,46,34,56,44,56,44$
16. 112,112
17. Answers may vary. Sample:

18. $12,12,21,21$
19. Explanations may vary. Sample: If both $\angle s$ are bisected, then this combined with $\overline{K M} \cong \overline{K M}$ by the Reflexive Prop. means $\triangle K L M \cong \triangle K N M$ by SAS. By CPCTC, $\angle L \cong \angle N$. $\angle L$ and $\angle N$ are opp. $\angle s$, but if $K L M N$ is isos., both pairs of base $\angle s$ are also \cong. By the Trans. Prop., all 4 angles are \cong, so $K L M N$ must be a rect. or a square. This contradicts what is given, so $\overline{K M}$ cannot bisect $\angle L M N$ and $\angle L K N$.
20. 12
21. 15
22. 15
23. 3
24. 4
25. 1
26. 28
27. $x=35, y=30$
28. $x=18, y=108$
29. Isosc. trapezoid; all the large rt. \& appear to be \cong.
30. $112,68,68$
31. Yes, the $\cong \measuredangle$ can be obtuse.
32. Yes, the $\cong \angle s$ can be obtuse, as well as one other \angle.
33. Yes; if $2 \cong \notin$ are rt. $\llcorner s$, they are suppl. The other $2 \notin$ are also suppl.
34. No; if two consecutive \angle s are suppl., then another pair must be also because one pair of opp. \llcorner is \cong. Therefore, the opp. \lfloor would be \cong, which means the figure would be a \square and not a kite.
35. Yes; the $\cong \angle s$ may be 45° each.
36. No; if two consecutive $\&$ were compl., then the kite would be concave.
37. Rhombuses and squares would be kites since opp. sides can be \cong also.
38. 39. $A B C D$ is an isos. trapezoid, $\overline{A B} \cong \overline{D C}$. (Given)
1. Draw $\overline{A E} \| \overline{D C}$. (Two points determine a line.)
2. $\overline{A D} \| \overline{E C}$ (Def. of a trapezoid)
3. $A E C D$ is a \square. (Def. of a \square)
4. $\angle C \cong \angle 1$ (Corr. $\angle s$ are \cong.)
5. $\overline{D C} \cong \overline{A E}$ (Opp. sides of a \square are \cong.)
6. $\overline{A B} \cong \overline{A E}$ (Trans. Prop. of \cong)
7. $\triangle A E B$ is an isosc. \triangle. (Def. of an isosc. \triangle)
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
8. $\angle B \cong \angle 1$ (Base $\angle s$ of an isosc. \triangle are \cong.)
9. $\angle B \cong \angle C$ (Trans. Prop. of \cong)
10. $\angle B$ and $\angle B A D$ are suppl., $\angle C$ and $\angle C D A$ are suppl. (Same side int. $\angle \mathrm{s}$ are suppl.)
11. $\angle B A D \cong \angle C D A$ (Suppl. of $\cong \angle$ are \cong.)
12. Answers may vary. Sample: Draw $\overline{T A}$ and $\overline{R P}$.
13. isosc. trapezoid $T R A P$ (Given)
14. $\overline{T A} \cong \overline{P R}$ (Diag. of an isosc. trap. are \cong.)
15. $\overline{T R} \cong \overline{P A}$ (Given)
16. $\overline{R A} \cong \overline{R A}$ (Refl. Prop. of \cong)
17. $\triangle T R A \cong \triangle P A R(\mathrm{SSS})$
18. $\angle R T A \cong \angle A P R(\mathrm{CPCTC})$
19. Draw $\overline{B I}$ as described, then draw $\overline{B T}$ and $\overline{B P}$.
20. $\overline{T R} \cong \overline{P A}$ (Given)
21. $\angle R \cong \angle A$ (Base \triangle of isosc. trap. are \cong.)
22. $\overline{R B} \cong \overline{A B}$ (Def. of bisector)
23. $\triangle T R B \cong \triangle P A B$ (SAS)
24. $\overline{B T} \cong \overline{B P}(\mathrm{CPCTC})$
25. $\angle R B T \cong \angle A B P$ (СРСТС)
26. $\angle T B I \cong \triangle P B I$ (Compl. of $\cong \triangleq$ are \cong.)
27. $\overline{B I} \cong \overline{B I}$ (Refl. Prop. of \cong)
28. $\triangle T B I \cong \triangle P B I$ (SAS)
29. $\angle B I T \cong \angle B I P$ (СРСТС)
30. $\angle B I T$ and $\angle B I P$ are rt. $₫ \leftrightarrow$. (\cong suppl. $₫ \leftrightarrow$ are rt. \mathscr{E}.)
31. $\overline{T I} \cong \overline{P I}$ (СРСТС)
32. $\overline{B I}$ is \perp bis. of $\overline{T P}$. (Def. of \perp bis.)

41-42. Check students' justifications. Samples are given.

41. It is one half the sum of the lengths of the bases; draw a diag. of the trap. to form 2Δ. The bases B and b of the trap. are each a base of a Δ. Then the segment joining the midpts. of the non-|| sides is the sum of the midsegments of the \mathbb{A}. This sum is $\frac{1}{2} B+\frac{1}{2} b=\frac{1}{2}(B+b)$.
42. It is one half the difference of the lengths of the bases. By the \triangle Midsegment Thm. and the $\|$ Post., midpoints L, M, N, and P are collinear. $M N=L N-L M=\frac{1}{2} B-\frac{1}{2} b$ $(\triangle$ Midsegment Thm. $)=\frac{1}{2}(B-b)$.

43. D is any point on $\overleftrightarrow{B N}$ such that $N D \neq B N$ and D is below N.
44. 45. $\overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}$ (Given)
1. $\overline{B D} \cong \overline{B D}$ (Refl. Prop. of \cong)
2. $\triangle A B D \cong \triangle C B D$ (SSS)
3. $\angle A \cong \angle C$ (CPCTC)

4. a. $(2 a, 0)$
b. $(0,2 b)$
c. (a, b)
d. $\sqrt{b^{2}+a^{2}}$
e. $\sqrt{b^{2}+a^{2}}$
f. $\sqrt{b^{2}+a^{2}}$
g. $M A=M B=M C$
5. $W(0, h) ; Z(b, 0)$
6. $W(a, a) ; Z(a, 0)$

7. $W(-b, b) ; Z(-b,-b)$
8. $W(0, b) ; Z(a, 0)$
9. $W(-r, 0) ; Z(0,-t)$
10. $W(-b, c) ; Z(0, c)$
11. Answers may vary. Sample: $r=3, t=2$; slopes are $\frac{2}{3}$ and $-\frac{2}{3}$; all lengths are $\sqrt{13}$; the opp. sides have the same slope, so they are $\|$. The 4 sides are \cong.
12. a. Diag. of a rhombus are \perp.
b. Diag. of a \square that is not a rhombus are not \perp.

10-15. Answers may vary. Samples are given.
10. A, C, H, F
12. A, B, F, E
14. A, C, F, E
16. $W(0,2 h) ; Z(2 b, 0)$
18. $W(-2 b, 2 b) ; Z(-2 b,-2 b)$
20. $W(-2 r, 0) ; Z(0,-2 t)$
22. A

Answers for Lesson 6-6, pp. 344-346 Exercises (cont.)

23. $(c-a, b)$
24. $(a, 0)$
25. $(-b, 0)$
26. a.

b. $(-b, 0),(0, b),(b, 0),(0,-b)$
c. $b \sqrt{2}$
d. $1,-1$
e. Yes, because the product of the slopes is -1 .

27
a.

b.

c. $\sqrt{b^{2}+4 c^{2}}$
d. $\sqrt{b^{2}+4 c^{2}}$
e. The lengths are $=$.
28.

29. Step 1: $(0,0)$

Step 2: $(a, 0)$
Step 3: Since $m \angle 1+m \angle 2+90=180, \angle 1$ and $\angle 2$ must be compl. $\angle 3$ and $\angle 2$ are the acute $\angle s$ of a rt. \triangle.

Step 4: $(-b, 0)$
Step 5: $(-b, a)$
Step 6: Using the formula for slope, the slope for $\ell_{1}=\frac{b}{a}$ and the slope for $\ell_{2}=-\frac{a}{b}$. Mult. the slopes, $\frac{b}{a} \cdot-\frac{a}{b}=-1$.

1. a. $W\left(\frac{a}{2}, \frac{b}{2}\right) ; Z\left(\frac{c+e}{2}, \frac{d}{2}\right)$
b. $W(a, b) ; Z(c+e, d)$
c. $W(2 a, 2 b) ; Z(2 c+2 e, 2 d)$
d. c; it uses multiples of 2 to name the coordinates of W and Z.
2. a. origin
3. a. y-axis
b. x-axis
b. Distance
c. 2
d. coordinates
4. a. rt. \angle
b. legs
c. multiples of 2
d. M
e. N
f. Midpoint
g. Distance
5. a. isos.
b. x-axis
c. y-axis
d. midpts.
e. \cong sides
f. slopes
g. the Distance Formula
6. a. $\sqrt{(b+a)^{2}+c^{2}}$
b. $\sqrt{(a+b)^{2}+c^{2}}$
7. a. $\sqrt{a^{2}+b^{2}}$
b. $2 \sqrt{a^{2}+b^{2}}$
8. a. $D(-a-b, c), E(0,2 c), F(a+b, c), G(0,0)$
b. $\sqrt{(a+b)^{2}+c^{2}}$
c. $\sqrt{(a+b)^{2}+c^{2}}$
d. $\sqrt{(a+b)^{2}+c^{2}}$
e. $\sqrt{(a+b)^{2}+c^{2}}$
f. $\frac{c}{a+b}$
g. $\frac{c}{a+b}$
h. $-\frac{c}{a+b}$
i. $-\frac{c}{a+b}$
j. sides
k. $D E F G$
9. a. (a, b)
b. (a, b)
c. the same point
10. Answers may vary. Sample: The \triangle Midsegment Thm.; the segment connecting the midpts. of 2 sides of the \triangle is $\|$ to the 3 rd side and half its length; you can use the Midpoint Formula and the Distance Formula to prove the statement directly.
11. The vertices of $K L M N$ are $L(b, a+c), M(b, c), N(-b, c)$, and $K(-b, a+c)$. The slopes of $\overline{K L}$ and $\overline{M N}$ are zero, so these segments are horizontal. The endpoints of $\overline{K N}$ have equal x-coordinates and so do the endpoints of $\overline{L M}$. So these segments are vertical. Hence opposite sides of $K L M N$ are parallel and consecutive sides are \perp. It follows that $K L M N$ is a rectangle.

12-23. Answers may vary. Samples are given.

12. yes; Dist. Formula
13. yes; same slope
14. yes; prod. of slopes $=-1$
15. no; may not have intersection pt.
16. no; may need \angle measures
17. no; may need \angle measures
18. yes; prod. of slopes of sides of $\angle A=-1$
19. yes; Dist. Formula
20. yes; Dist. Formula, 2 sides $=$
21. no; may need \angle measures
22. yes; intersection pt. for all 3 segments
23. yes; Dist. Formula, $A B=B C=C D=A D$
24. A
25. $1,4,7$
26. $0,2,4,6,8$
27. $-0.8,0.4,1.6,2.8,4,5.2,6.4,7.6,8.8$
28. $-1.76,-1.52,-1.28, \ldots, 9.52,9.76$
29. $-2+\frac{12}{n},-2+2\left(\frac{12}{n}\right),-2+3\left(\frac{12}{n}\right), \ldots,-2+(n-1)\left(\frac{12}{n}\right)$
30. $(0,7.5),(3,10),(6,12.5)$
31. $\left(-1,6 \frac{2}{3}\right),\left(1,8 \frac{1}{3}\right),(3,10),\left(5,11 \frac{2}{3}\right),\left(7,13 \frac{1}{3}\right)$
32. $(-1.8,6),(-0.6,7),(0.6,8),(1.8,9),(3,10),(4.2,11),(5.4,12)$, $(6.6,13),(7.8,14)$

33. $(-2.76,5.2),(-2.52,5.4),(-2.28,5.6), \ldots,(8.52,14.6)$, $(8.76,14.8)$
34. $\left(-3+\frac{12}{n}, 5+\frac{10}{n}\right),\left(-3+2\left(\frac{12}{n}\right), 5+2\left(\frac{10}{n}\right)\right), \ldots$, $\left(-3+(n-1)\left(\frac{12}{n}\right), 5+(n-1)\left(\frac{10}{n}\right)\right)$
35. a. $L(b, d), M(b+c, d), N(c, 0)$
b. $\overleftrightarrow{A M}: y=\frac{d}{b+c} x ; \overleftrightarrow{B N}: y=\frac{2 d}{2 b-c}(x-c)$;

$$
\overleftrightarrow{C L}: y=\frac{d}{b-2 c}(x-2 c)
$$

c. $P\left(\frac{2(b+c)}{3}, \frac{2 d}{3}\right)$
d. Pt. P satisfies the eqs. for $\overleftrightarrow{A M}$ and $\overleftrightarrow{C L}$.
e. $A M=\sqrt{(b+c)^{2}+d^{2}} ; A P=\sqrt{\left(\frac{2(b+c)}{3}\right)^{2}+\left(\frac{2 d}{3}\right)^{2}}=$

$$
\sqrt{\left(\frac{2}{3}\right)^{2}\left((b+c)^{2}+d^{2}\right)}=\frac{2}{3} \sqrt{(b+c)^{2}+d^{2}}=\frac{2}{3} A M
$$

The other 2 distances are found similarly.
36.
a. $\frac{b}{c}$
b. Let a pt. on line p be (x, y). Then the eq. of p is $\frac{y-0}{x-a}=\frac{b}{c}$ or $y=\frac{b}{c}(x-a)$.
c. $x=0$
d. When $x=0, y=\frac{b}{c}(x-a)=\frac{b}{c}(-a)=-\frac{a b}{c}$. So p and q intersect at $\left(0,-\frac{a b}{c}\right)$.
e. $\frac{a}{c}$
f. Let a pt. on line r be (x, y). Then the eq. of r is $\frac{y-0}{x-b}=\frac{a}{c}$ or $y=\frac{a}{c}(x-b)$.
g. $-\frac{a b}{c}=\frac{a}{c}(0-b)$
h. $\left(0,-\frac{a b}{c}\right)$
37. Assume $b>a . a+\frac{b-a}{n}, a+2\left(\frac{b-a}{n}\right), \ldots$,
$a+(n-1)\left(\frac{b-a}{n}\right)$
38. Assume $b \geq a, d \geq c .\left(a+\frac{b-a}{n}, c+\frac{d-c}{n}\right)$,
$\left(a+2\left(\frac{b-a}{n}\right), c+2\left(\frac{d-c}{n}\right)\right), \ldots$,
$\left(a+(n-1)\left(\frac{b-a}{n}\right), c+(n-1)\left(\frac{d-c}{n}\right)\right)$
39. a. The $\&$ with bases d and b, and heights c and a, respectively, have the same area. They share the small right Δ with base d and height c, and the remaining areas are Δ with base c and height $(b-d)$. So $\frac{1}{2} a d=\frac{1}{2} b c$. Mult. both sides by 2 gives $a d=b c$.
b. The diagram shows that $\frac{a}{b}=\frac{c}{d}$, since both represent the slope of the top segment of the \triangle. So by (a), $a d=b c$.

Answers for Lesson 6-7, pp. 349-353 Exercises (cont.)

40. Divide the quad. into 2 s. Find the centroid for each \triangle and connect them. Now divide the quad. into 2 other $₫$ and follow the same steps. Where the two lines meet connecting the centroids of the $4 \triangleq$ is the centroid of the quad.
41. a. Horiz. lines have slope 0 , and vert. lines have undef. slope. Neither could be mult. to get -1 .
b. Assume the lines do not intersect. Then they have the same slope, say m. Then $m \cdot m=m^{2}=-1$, which is impossible. So the lines must intersect.
c. Let the eq. for ℓ_{1} be $y=\frac{b}{a} x$, and for ℓ_{2} be $y=-\frac{a}{b} x$, and the origin be the int. point.

Define $C(a, b), A(0,0)$, and $B\left(a,-\frac{a^{2}}{b}\right)$. Using the Distance Formula, $A C=\sqrt{a^{2}+b^{2}}, B A=\sqrt{a^{2}+\frac{a^{4}}{b^{2}}}$, and $C B=b+\frac{a^{2}}{b}$. Then $A C^{2}+B A^{2}=C B^{2}$, and $m \angle A=90$ by the Conv. of the Pythagorean Thm. So $\ell_{1} \perp \ell_{2}$.

