Geometry Proportions with Parallel lines

Mark any congruent angles in the picture.

Draw and label the triangles QRS and QXY.

Ay Ay

Write a similarity statement and the postulate or theorem that would prove the triangles similar.

DQRS~ DQXY

AA~

Do you agree or disagree with the following statement? Explain your reasoning.

If a line is inside and parallel to one side of a triangle then it will form two similar triangles.

A Tagree, because of
the parerllel lines
the corresponding angles will be =
which will probe the Dissimilar

Draw the similar triangles, write a proportion and use that to solve for the variable.

$$\frac{x}{16} = \frac{5}{10}$$

$$\frac{10}{8} = \frac{6}{8}$$

$$\frac{X}{X+1.5} = \frac{5}{2.5}$$

$$2.5_{x} + 3.75 = 5x$$

 $3.75 = 2.5x$
 $x = 1.5$

The previous page gave us an example of the Side-Splitter Theorem.

Theorem 7-4

Side-Splitter Theorem

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides proportionally.

Using the side splitter theorem, write a proportion comparing sides a, b, c, and d.

Now look what happens if we add a third parallel line. Can you write a proportion comparing sides c, d, e, and f?

Can you write a proportion comparing sides a,

Corollary to Theorem 7-4

If three parallel lines intersect two transversals, then the segments intercepted on the transversals are proportional.

$$\frac{a}{b} = \frac{c}{d}$$

C

Notice in this picture you can not see the top of the triangle. We do not have to see it to know that it is there.

Write a proportion and solve these problems for the variable(s).

$$30 = 4x$$

 $x = 7.5$

$$n+1$$
 20 20

$$\frac{n+1}{28} = \frac{20}{35}$$
$$35n+35=560$$

